19.1 Electrochemical cells

Voltaic Cells

- **Electromotive Force (EMF):** The energy supplied by a source divided by the electric charge transported through the source
- In voltaic cell, a **cell potential** is generated, resulting in movement of electrons from anode to cathode via external circuit.
- **Cell potential:** the potential difference between the cathode and the anode when the cell is operating
- Under standard conditions, cell potential is called **Standard Cell potential**

$$\circ$$
 $\mathsf{E}\Box_{\mathsf{cell}} = \mathsf{E}\Box_{\mathsf{cat}} - \mathsf{E}\Box_{\mathsf{an}}$

- In order to calculate $E\square_{cell}$ for a **spontaneous** cell, the cathode is taken as the more positive value from the two electrodes
- The more positive one is also the **strongest oxidizing agent**

Standard Hydrogen Electrode (SHE)

- Consists of an inert platinum electrode in contact with 1 mol dm⁻³ hydrogen ions and hydrogen gas at 100 kPa and 298 K. This is an example of a gas electrode
- Standard electrode potential of a single half-cell cannot be measured on its own. Has to be relative to another cell
- Standard electrode potentials are measured relative to SHE
- SHE has E□_{cell} of 0V
- The reduction half equation corresponding to the SHE cell is

$$2H^+{}_{(aq)} + 2e^- \leftrightarrow H_{2(g)}$$

0

Cell potential and Gibbs free energy

- Spontaneous:
 - \circ E \square_{cell} is positive, ΔG is negative
- Non-Spontaneous
 - \circ E \square _{cell} is negative, Δ G is positive

- When $\triangle G$ is 0, $E \square_{cell}$ is 0
- Both are related by following equation:

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$

- o Where:
- n= amount, in mol, of electrons
- F = Faraday's constant = 96500 C mol⁻¹

Electrolytic Cells

- Convert electrical to chemical energy
- In SL, we looked at electrolysis of molten salt, now we will look at types of electrolysis
- The higher the reduction potential, higher the tendency to react
- 1. Electrolysis aqueous NaCl
 - Concentrated
 - You have to take into account water as well
 - At cathode, water is reduced to create hydrogen gas
 - At anode, Cl⁻ is oxidized to create Cl₂ gas
 - o Diluted
- At cathode, hydrogen ions are reduced to create hydrogen gas
- At anode, water is oxidized to produce oxygen gas
- This is equivalent to electrolysis of water
- 2. Electrolysis of CuSO4
 - Inert graphite (carbon) electrodes
 - Electrodes don't take part in reactions
 - At cathode, copper ions are reduced to create copper deposits
 - At anode, water is oxidized to produce oxygen gas
 - Active copper electrodes
 - Electrodes take part in reaction
 - At cathode, copper ions are reduced to create copper deposits
 - At anode, sludge of impurities is found
 - Process known as electrorefining in which the impurities in copper are separated from copper itself

- Also the basis of electroplating in which a thin layer of metal is deposited onto cathode of another
- 3. Electrolysis of water
 - Water is poor conductor of electricity
 - Electrolysis of water is done in **dilute** solutions of sulfuric acid or sodium hydroxide using **inert** Pt electrodes
 - At cathode, hydrogen ions are reduced to create **hydrogen gas**
 - At anode, water is oxidized to produce oxygen gas

Factors affecting amount of product formed

- 1. Current
- Higher the current, greater yield
- Q=It
- 2. Duration of electrolysis
 - Longer the time, greater yield
- 3. Charge on the ion
 - Na⁺ required 1 mol of electrons however Pb²⁺ requires 2 mols of electrons