Fill in the blanks IB students for a better understanding of the material presented!

Oxidation state
There are some that nearly always have the same oxidation state. These can be used to calculate the states of the atoms to which they are bonded.
, for example has an oxidation state of -1 when bonded to a metal (more electropositive element) and
+1 when bonded to a moreelement (non-metal)is nearly always -2 (the exception is when it is
in the form of the peroxide ion, O-O2-, it has an oxidation state of -1).
Group and 2 metals have an oxidation state of +1 and +2 respectively.
Naming compounds
As we have seen, some chemical elements have a variable number. The only way to know an element's
oxidation number is to work it out from known oxidation numbers. To avoid confusion in the name, elements with
oxidation numbers have the number included.
The oxidation state or number of any element within a compound is shown by anumeral immediately after
the element in question. Roman numerals are used to avoid confusion. The numerals are only used in the names of
the compounds, NOT the formulae
Oxidation Reactions
These are reactions whereare transferred from one species (atom, molecule or ion) to another. We can
write '' equations to show only what happens to the species losing electrons or a different 'half' equation to
show the species gaining electrons. Logically when a species loses or gains electrons, it must change its oxidation
number or state.
The whole and reduction equation (redox equation) is put together by balancing the number of electrons
on both sides in each half-equation and adding them together (when the electrons cancel out)

Reactivity

oxidation, reactivity, reactive

It is possible to organise a group of similar chemicals that undergo eitheror reduction according to their
relative Oxidation (and reduction) is a competition for The oxidising species (agents) remove
electrons from other species and can force them to become reducing agents (releasers of electrons)
A good example of this competition for electrons is the behaviour of metals. Metals always react by losing electrons
(oxidation); they are reducing agents. However if a metal is in competition with metal ions of a different element,
the more reactive metal can oblige the lessmetal (in the form of ions) to accept electrons. This is called a
displacement reaction.
Answers in order:
Elements, oxidation states, Hydrogen, electronegative, Oxygen, Oxidation, variable, roman, electrons, half, oxidation,